Search results for "wave equation"
showing 10 items of 74 documents
Bézier Solutions of the Wave Equation
2004
We study polynomial solutions in the Bezier form of the wave equation in dimensions one and two. We explicitly determine which control points of the Bezier solution at two different times fix the solution.
Wave propagation in 1D elastic solids in presence of long-range central interactions
2011
Abstract In this paper wave propagation in non-local elastic solids is examined in the framework of the mechanically based non-local elasticity theory established by the author in previous papers. It is shown that such a model coincides with the well-known Kroner–Eringen integral model of non-local elasticity in unbounded domains. The appeal of the proposed model is that the mechanical boundary conditions may easily be imposed because the applied pressure at the boundaries of the solid must be equilibrated by the Cauchy stress. In fact, the long-range forces between different volume elements are modelled, in the body domain, as central body forces applied to the interacting elements. It is …
Improvement of matrix solutions of generalized nonlinear wave equation
2005
Four classes of nonlinear wave equations are joined in one generalized nonlinear wave equation. A theorem is proved that the whole series of matrix functions satisfy the generalized wave equation. A justification of rotational properties of matrix solutions is given and a mathematical model of the ring vortex around the acute edge is proposed using of matrix solutions.
Mathematical Models and their Solutions for Domains of Compex Form
2014
Promocijas darbā tiek apskatīti dažādi oriģināli modeļi un to risinājumi sarežģītas formas apgabaliem. Intensīvās tērauda rūdīšanas procesi sistēmām ar ribām tiek aprakstīti ar 3D hiperbolisko, kā arī ar klasisko siltuma vadīšanas vienādojumu. Precīzā atrisinājuma iegūšanai izmantota Grīna funkciju metode un tās vispārinājums. Modernajos datoros sastopamajām sistēmām ar dubulsieniņu un dubultribu dota stacionārā un nestacionārā siltumvadīšanas problēma 2D gadījumā. Tās risinājums tiek iegūts ar konservatīvās viduvēšanas metodi, galīgo diferenču metodi un tās modifikāciju robežnosacījumiem. Piedāvāts jauns matemātiskais modelis vītola flautai, problēmas formulējumā izmantojot 1D lineāru viļņ…
Finite propagation speed for solutions of the wave equation on metric graphs
2012
We provide a class of self-adjoint Laplace operators on metric graphs with the property that the solutions of the associated wave equation satisfy the finite propagation speed property. The proof uses energy methods, which are adaptions of corresponding methods for smooth manifolds.
Homogenization of the wave equation in composites with imperfect interface : a memory effect
2007
Abstract In this paper we study the asymptotic behaviour of the wave equation with rapidly oscillating coefficients in a two-component composite with e-periodic imperfect inclusions. We prescribe on the interface between the two components a jump of the solution proportional to the conormal derivatives through a function of order e γ . For the different values of γ, we obtain different limit problems. In particular, for γ = 1 we have a linear memory effect in the homogenized problem.
A blow-up result for a nonlinear wave equation on manifolds: the critical case
2021
We consider a inhomogeneous semilinear wave equation on a noncompact complete Riemannian manifold (Formula presented.) of dimension (Formula presented.), without boundary. The reaction exhibits the combined effects of a critical term and of a forcing term. Using a rescaled test function argument together with appropriate estimates, we show that the equation admits no global solution. Moreover, in the special case when (Formula presented.), our result improves the existing literature. Namely, our main result is valid without assuming that the initial values are compactly supported.
A damping preconditioner for time-harmonic wave equations in fluid and elastic material
2009
A physical damping is considered as a preconditioning technique for acoustic and elastic wave scattering. The earlier preconditioners for the Helmholtz equation are generalized for elastic materials and three-dimensional domains. An algebraic multigrid method is used in approximating the inverse of damped operators. Several numerical experiments demonstrate the behavior of the method in complicated two-dimensional and three-dimensional domains. peerReviewed
Condensation of classical nonlinear waves
2005
We study the formation of a large-scale coherent structure (a condensate) in classical wave equations by considering the defocusing nonlinear Schr\"odinger equation as a representative model. We formulate a thermodynamic description of the condensation process by using a wave turbulence theory with ultraviolet cut-off. In 3 dimensions the equilibrium state undergoes a phase transition for sufficiently low energy density, while no transition occurs in 2 dimensions, in analogy with standard Bose-Einstein condensation in quantum systems. Numerical simulations show that the thermodynamic limit is reached for systems with $16^3$ computational modes and greater. On the basis of a modified wave tu…
The nonlinear Schrodinger equation and the propagation of weakly nonlinear waves in optical fibres and on the water surface
2015
International audience; The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose–Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin–Feir index, i.e. a nondimensional par…